Block-diagonalized rigidity matrices of symmetric frameworks and applications
نویسنده
چکیده
In this paper, we give a complete self-contained proof that the rigidity matrix of a symmetric bar and joint framework (as well as its transpose) can be transformed into a block-diagonalized form using techniques from group representation theory. This theorem is basic to a number of useful and interesting results concerning the rigidity and flexibility of symmetric frameworks. As an example, we use this theorem to prove a generalization of the symmetry-extended version of Maxwell’s rule given in [9] which can be applied to both injective and non-injective realizations in all dimensions.
منابع مشابه
ON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION
The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...
متن کاملA Fast Algorithm for Deblurring Models with Neumann Boundary Conditions
Blur removal is an important problem in signal and image processing. The blurring matrices obtained by using the zero boundary condition (corresponding to assuming dark background outside the scene) are Toeplitz matrices for one-dimensional problems and block-Toeplitz–Toeplitzblock matrices for two-dimensional cases. They are computationally intensive to invert especially in the block case. If ...
متن کاملThe exponential functions of central-symmetric $X$-form matrices
It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...
متن کاملInfinitesimal Rigidity of Symmetric Bar-Joint Frameworks
We propose new symmetry-adapted rigidity matrices to analyze the infinitesimal rigidity of arbitrary-dimensional bar-joint frameworks with Abelian point group symmetries. These matrices define new symmetry-adapted rigidity matroids on grouplabeled quotient graphs. Using these new tools, we establish combinatorial characterizations of infinitesimally rigid two-dimensional bar-joint frameworks wh...
متن کاملSparse Generalized Fourier Transforms ∗
Block-diagonalization of sparse equivariant discretization matrices is studied. Such matrices typically arise when partial differential equations that evolve in symmetric geometries are discretized via the finite element method or via finite differences. By considering sparse equivariant matrices as equivariant graphs, we identify a condition for when block-diagonalization via a sparse variant ...
متن کامل